
Differential Equations Tutor, Volume I

Worksheet 7

Existence and Uniqueness Theorem



Worksheet for Differential Equations Tutor, Volume I, Section 7:

Existence and Uniqueness Theorem

For the following differential equations:

(a) Does a solution exist?

(b) If a solution exists, is the solution unique? Over what interval (if any) is it unique?

Show all your work. The main point of these exercises is to see the existence and unique-

ness theorem in action. To demonstrate that a solution exists, then, you should try to

actually find a solution. To demonstrate that a solution s(t) is unique, a good technique is

to prove that A(t)s(t) or A(t) + s(t) cannot be a solution for any function A(t). To demon-

strate that a solution is not unique, find another solution.

1. dx
dt

= 2x with x(0) = 3;
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2. dy
dt

+ ty = t with y(0) = 100;

3. dx
dt

= 2x+1 with x′(0) = 4. Hint: how can you demonstrate that x′(0) = 4 is equivalent

to an initial condition of type x(t0) = x0?

4. dx
dt

= 2t
ex

with x(0) = 0. Hint: use a transformation (equivalent to a u-substitution) to

put this equation into the form du
dt

= 2t, so that you can then apply the existence and

uniqueness theorem. If a solution for u exists on some interval , what does that imply

about x?
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5. 2xdx+ ydy = 0 with y(1) = 3;

6. dx
dt

= x
t

with x(−1) = −2;

7. dy
dx

= y lnx with y(100) = 5;
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8. dx
dt

+ x
t2−1 = 2

2t−1 with x(0) = 0. What if instead of x(0) = 0 we have x(2) = 0?

9. dx
dt

+ x tan t = 1 with x(3) = 5. What if instead of x(3) = 5 we have x(5) = 5000?

10. dy
dx

+ y csc x
2
= x with y(−3) = 4. What if instead of y(−3) = 4 we have y(3) = 4?
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Answer key.

1. dx
dt

= 2x with x(0) = 3.

This is a fairly basic differential equation. The existence-uniqueness theorem says

first that a solution exists, and second that there is only one continuous function that

solves this differential equation with initial condition. There is only one continuous

function that solves this differential equation with initial condition over any domain.

The behavior of any solution function is prescribed for the entire real line just based

on the initial condition. We can put the differential equation in form

dx

dt
+ p(t)x = q(t)

which in this case is
dx

dt
− 2x = 0

Since p(t) = −2 and q(t) = 0 are continuous over the entire real line, then there is

one continuous function that solves this differential equation over the entire real line.

This does not mean that there are other continuous functions that solve this differen-

tial equation with initial condition over smaller spaces. No other solution is defined

anywhere on the real line.

This sounds like an abstract discussion, but it becomes clear as we begin to work

the problem. Even without the statement of the existence and uniqueness theorem,

we know how to find a solution (proving that it exists), and we can also prove that

the solution is unique. We can corroborate the formal statement of the existence and

uniqueness theorem by demonstrating, in this case, that all the assertions made by

that theorem are true.

First we want to show that a solution to this differential equation exists. The most
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straightforward way to show that a solution exists is to actually find the solution. We

can easily find the solution because this differential equation is separable. Since

dx

dt
= 2x

we have that
1

x
dx = 2dt

Integrating both sides, ∫
1

x
dx =

∫
2dt

so

ln |x| = 2t+ C

where we move the constant to the right-hand side. Exponentiating, then,

|x| = e2t+C = Ce2t

We can drop the absolute value, and in this section it is important to understand

why. Could there be a solution where at some point x = Ce2t and at another point

−x = Ce−2t so x = −Ce−2t? It actually turns out that this is impossible if x(t) is to be

continuous. If x = Ce2t at some point and −Ce2t at another point, it follows that there

is some point a where on one side of a, x = Ce2t and on another side of a, x = −Ce2t

- more formally,

lim
t→a+

x(t) = Ce2t, lim
t→a−

x(t) = −Ce2t

or vice-versa. However, then x(t) is discontinuous at a with a “jump discontinuity.”

There is a discontinuity since

Ce2t 6= −Ce−2t

We know that these two can never be equal since

e2t 6= 0
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for any value of t, unless C = 0 which is the constant “steady-state” solution. Then,

since x cannot equal both Ce2t and −Ce2t, we can simply define

x = Ce2t

whether C is positive or negative. Alternatively, we can reason that

x(t) = Ce2t 6= 0

so it is either positive or negative. Then, we sign C accordingly and we can drop the

absolute value to get

x(t) = Ce2t

Now we can apply the initial condition:

x(0) = 3

so

Ce2(0) = 3

and

C = 3

leaving us with the specific solution

x(t) = 3e2t

This specific solution is defined everywhere and solves the differential equation ev-

erywhere (not just close to t = 0), which corroborates the result of the existence

theorem because p(t) = −2 and q(t) = 0 are continuous everywhere.

The next step is to prove that this solution is unique - that there is no other function

X(t) that solves the differential equation with initial condition anywhere in the neigh-

borhood of t = 0 - let alone over the entire real line. We suppose that such a function

X(t) existed with X(0) = 3. Then, we must have

X(t) = a(t)x(t)
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for some function a(t), because
X(t)

x(t)
= a(t)

for some function a(t). The function a(t) is well-defined since x(t) = 3e2t is never

zero, so we can comfortably divide by it. Then, we test to see under what conditions

for a the function

X(t) = 3e2ta(t)

could solve our original differential equation

dx

dt
= 2x

We have
d

dt
X(t) =

d

dt

(
3e2ta(t)

)
= 6e2ta(t) + 3e2ta′(t)

so we want to know under what conditions

6e2ta(t) + 3e2ta′(t) = 6e2ta(t)

This is true just when

3e2ta′(t) = 0

Since e2t is never zero, this is true when

a′(t) = 0

which means that a(t) must be a constant. Then, the only other possible solutions

are

X(t) = a · 3e2t

This matches the notion that the general solution to this differential equation is Ce2t.

However, the presence of the initial condition “winnows down” the general solution,

which we suspect will disallow any multiplicative constant. In fact, for

X(0) = 3
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we would need

a · 3e0 = 3

which means

a = 1

Then, we have proven that the only specific solution is

x(t) = 3e2t

The answer, then, given by the existence and uniqueness theorem and corroborated

by the differential equations techniques that we already know, is that

there exists a unique solution to this differential equation with initial condition.

Furthermore,

This is a solution, and the unique solution, over the entire real line.

The theorem is applicable to differential equations that are more difficult to solve, or

even those where we can’t actually find the solution. The theorem does not depend

on a constructive proof such as we were able to employ here.
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2. dy
dt

+ ty = t with y(0) = 100.

This differential equation is perfectly suited to use the existence and uniqueness the-

orem. The equation is in the form

dy

dt
+ p(t)y = q(t)

with

p(t) = q(t) = t

We have that p(t) and q(t) are continuous and defined over the entire real line. There

also is an initial condition provided. Then, by the existence and uniqueness theorem,

there exists a unique solution to this differential equation over the entire real line.

There are no other solutions that meet the initial condition that are defined anywhere,

that differ from the unique solution over any part of the real line. We can assert this

with confidence even though the initial condition is “large” (a large value of x), and

even though we have not actually found a solution or demonstrated its uniqueness.

Having asserted the existence and uniqueness theorem, we can find the unique so-

lution. This is a linear nonhomogeneous equation. We first need to solve the related

homogeneous equation,
dy

dt
+ ty = 0

This is a separable equation:
1

y
dy = −tdt

so

ln |y| = −t
2

2
+ C

and

|y| = Ce−
t2

2
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Once again, the solution to the homogeneous solution is not continuous as it must be

if C changes in value. Then, C must be either positive or negative, so we can drop

the absolute value and find that

y = ke−
t2

2

This is the related homogeneous solution. We posit a solution to the nonhomoge-

neous equation of the form

y(t) = k(t)e−
t2

2

Then,
dy

dt
= k′(t)e−

t2

2 − tk(t)e−
t2

2

We solve
dy

dt
+ ty = t

This is

k′(t)e−
t2

2 = t

so

k′(t) = te
t2

2

and

k(t) =

∫
te

t2

2 dt = e
t2

2 + C

using a u-substitution of

u =
t2

2

Then we have

y(t) = k(t)h(t) =
(
e

t2

2 + C
)(

e−
t2

2

)
= 1 + Ce−

t2

2

Since

y(0) = 100

we have

100 = 1 + Ce0
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so

C = 99

and we have constructed a specific solution over the real line (demonstrating exis-

tence):

y(t) = 1 + 99e−
t2

2

Suppose another specific solution existed, X(t). Then we would have

X(t) = 1 + 99e−
t2

2 + a(t)

for some function a(t) with

a(0) = 0

If X(t) satisfies the differential equation, we have

dX

dt
+ tX = t

so

1− 99te−
t2

2 + a′(t) + t+ 99te−
t2

2 + ta(t) = t

which means

a′(t) + ta(t) = 0

This is separable, so

1

a
da = −t, ln |a| = −t

2

2
+ C, a = Ce−

t2

2

Since a(0) = 0 we must have

C = 0

proving the uniqueness of the solution that we have found. It is unique over the entire

real line since no other specific solution is defined anywhere.

c©2019 MathTutorDVD.com 12



3. dx
dt

= 2x+ 1 with x′(0) = 4;

We can adapt the argument of the existence-uniqueness theorem to support this

problem. We put the equation into the required form

dx

dt
+ p(t)x = q(t)

Here, the equation is
dx

dt
− 2x = 1

so

p(t) = −2, q(t) = 1

Both of these functions are continuous everywhere, so that means that there exists

a solution that is continuous everywhere. How about uniqueness? We are not, ex-

actly, given an initial condition since the condition we are given is on x′, not on x. We

could directly apply the uniqueness theorem if x(0) = 4, for instance. Since x′(0) = 4

that does indicate that there is a specific solution, so there is an initial value at some

point. We can then argue from the existence-uniqueness theorem that the solution is

unique.

More formally, we can prove, “by construction,” that the solution exists - and then

find the initial condition in the form x(t0) = x0 that allows us to apply the existence-

uniqueness theorem formally and directly. We need to solve the equation

dx

dt
= 2x+ 1

The standard form of this equation is

dx

dt
− 2x = 1

This is a nonhomogeneous linear ODE. To solve a nonhomogeneous equation, we

c©2019 MathTutorDVD.com 13



first need to solve the related homogeneous equation,

dx

dt
− 2x = 0

As we solved above, the general solution to the related homogeneous equation is

x(t) = ke2t

Then, varying the parameter, we look for a solution to the nonhomogeneous equation

in the form

k(t)e2t

We have
dx

dt
− 2x = k′(t)e2t + 2k(t)e2t − 2k(t)e2t

which we set equal to 1:

k′(t)e2t = 1, k′(t) = e−2t

so

k(t) = −1

2
e−2t + C

for a constant of integration C. Then,

x(t) =

(
−1

2
e−2t + C

)
e2t = −1

2
+ Ce2t

Now we apply

x′(0) = 4

We have

x′(t) = 0 + 2Ce2t

Then,

x′(0) = 0 + 2Ce2(0) = 4

so

C = 2
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and the specific solution is

−1

2
+ 2e2t

We now have an initial value in the form x(t0) = x0; say,

x(0) =
3

2

so by the existence-uniqueness theorem there is a unique solution. Suppose that

there were another solution

X(t) = x(t) + a(t)

Then, we would have
dX

dt
=
dx

dt
+
da

dt
= 4e2t +

da

dt

and

2X + 1 = 2

(
−1

2
+ 2e2t + a(t)

)
+ 1 = 4e2t + 2a(t)

Then, for the differential equation to hold true,

da

dt
= 2a(t)

which is solved by

a(t) = Ce2t

for some constant C. This matches the fact that the general solution to the differential

equation is

x(t) = −1

2
+ Ce2t

However, x′(0) = 4 is met only when C = 4. Then, we have demonstrated unique-

ness to corroborate the existence-uniqueness theorem. As before, the domain of

uniqueness or interval of validity is the whole real line.

There exists a unique solution over the entire real line.
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4. dx
dt

= 2t
ex

with x(0) = 0.

The existence and uniqueness theorem indicates whether or not a solution exists and

whether or not it is unique. To apply this theorem, however, strictly speaking, we need

a differential equation in the form

dx

dt
+ p(t)x = q(t)

This equation cannot be manipulated into that form by algebraic operations, so it

seems that we may be at a loss to apply the formal existence theorem. If we want to

apply the theorem formally, we need to use an transform. We let

u = ex

Then,
du

dt
=

d

dt
ex = ex

dx

dt

so
dx

dt
= e−x

du

dt
=

1

u

du

dt

and the differential equation in terms of u and t is

1

u

du

dt
=

2t

u

Then,
du

dt
= 2t

which is a differential equation in u and t subject to the existence and uniqueness

theorem. There exists a unique solution function subject to the initial condition (which

is u(0) = e0 = 1) and the interval of validity is likewise the entire real line since

p(t) = −2t is continuous everywhere. There is a problem, however: u can only be

positive since u = ex. So the unique solution is only defined for positive u- and then a

unique solution x = lnu is defined. But it so happens that the general solution for u is

u = t2 + C
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and

C = 1

so

u = t2 + 1

is positive for any value of t. Then the interval of validity for existence and unique-

ness is the entire real line. In this convoluted way, we can apply the existence and

uniqueness theorem to this problem even if it is not yet in the desired form.

We can also prove existence and uniqueness using the basic differential equations

techniques that we have already developed. Even though this differential equation is

not linear, it is still separable. We write it as

exdx = 2tdt

Integrating, then

ex = t2 + C

so

x(t) = ln
(
t2 + C

)
This is the general solution to this differential equation. We have

x(0) = 0

so

x(0) = ln
(
02 + C

)
= 0

so

lnC = 0

which means

C = 1

c©2019 MathTutorDVD.com 17



and the specific solution is

x(t) = ln
(
t2 + 1

)
Then, there is a solution to the differential equation that exists over the entire real line,

since t2 + 1 is positive everywhere and its logarithm is defined.

We can also prove that the solution x(t) = ln (t2 + 1) is unique. We can prove that

there is no other continuous solution to this differential equation anywhere in the

vicinity of t = 0, or over the entire real line. Suppose that such another solution X(t)

solved the differential equation. We can write

X(t) = ln
(
t2 + a(t)

)
for some a(t). Then,

a(t) = eX(t) − t2

which is well-defined everywhere for all values of t,X. We have constructed the form

of any possible other solution X(t) by a unique construction, writing it in terms of a(t).

Then, we have
dX

dt
=

1

t2 + a(t)
· (2t+ a′(t))

and we have
2t

eX
=

2t

t2 + a(t)

For the differential equation to hold true, we need

2t+ a′(t)

t2 + a(t)
=

2t

t2 + a(t)

so
a′(t)

t2 + a(t)
= 0

If a is a continuous function, then,

a′(t) = 0
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and a is a constant, so every solution to the differential equation is of the form

x(t) = ln
(
t2 + a

)
This corresponds to the form of the general solution. To meet the initial condition,

however, we must have a = 1. Then there is no other solution to the differential

equation with initial condition defined anywhere. It is not possible, for instance, to

have a solution in the form of x(t) = ln (t2 + 1) near the origin and x(t) = ln (t2 + a)

somewhere else. If this were the case, there would be a place of discontinuity where

ln (t2 + 1) meets ln (t2 + a), and these are never equal unless a = 1. Then, no con-

tinuous function is defined that is different from x(t) = ln (t2 + a) anywhere. We have

proven, then, that

there exists a unique solution everywhere.

Our calculations corroborate the result of the existence and uniqueness theorem.
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5. 2xdx+ ydy = 0 with y(1) = 3.

The form of this problem is, we note, different than the others. To apply the existence-

uniqueness theorem, we would need to put the equation in the form

dy

dx
+ p(x)y = q(x)

for some functions p(x) and q(x). If we try to put the function into this form, however,

we have that

ydy = −2xdx

so
dy

dx
=
−2x
y

and
dy

dx
+ 2x · 1

y
= 0

Here, it is not possible to put the differential equation in the desired form for ap-

plication of the theorem, and if we try we encounter a problem with a discontinu-

ity at y = 0. Is there any transformation that could make this problem subject to

the existence-uniqueness theorem? No basic transformation seems to work, so the

existence-uniqueness theorem as we have it actually doesn’t indicate whether there

exists a solution or whether the solution is unique.

This differential equation, however, is simple enough to be solved, which would demon-

strate existence and possibly hint at uniqueness. We could solve it as an exact dif-

ferential equation or as a separable differential equation. If we separate, we have

that

ydy = −2xdx

Integrating,
y2

2
= −x2 + C
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for some constant C. Multiplying by 2, we have that

y2 + 2x2 = C

for some constant C. This is the general solution. If y(1) = 3, then we have

(x, y) = (1, 3)

on this curve, so

32 + 2(12) = C

and

11 = C

so the specific solution is

2x2 + y2 = 11

We have proven that a solution exists, but over what domain? We must have

y2 = 11− 2x2 ≥ 0

so

11− 2x2 ≥ 0, x2 ≤ 11

2
,−
√

11

2
≤ x ≤

√
11

2

This is the range of existence. No solution to this initial value problem exists that is

defined outside of this range. How about uniqueness? At first, it might seem that the

solution is not unique because we could have

y = ±
√
11− 2x2

However, we are guaranteed by the initial condition to have y positive when x = 1,

so then y must be positive at that point. It follows that y must be positive everywhere

on the interval of existence: if it were to be negative and continuous it must be zero

somewhere, but its zeroes are only at the edges of the interval of existence at x =

±
√

11
2

. Then, the solution is unique also on this interval. Then,

There exists a unique solution on the interval −
√
22

2
≤ x ≤

√
22

2
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We could also solve this problem by transformation. We could let

u = 11− 2x2

which means that u ≤ 11. Then,

du

dy
= −4xdx

dy

so
dy

du
= − 1

4x

dy

dx

and
dy

dx
= −4xdy

du

so the differential equation
dy

dx
+ 2x · 1

y
= 0

becomes

−4xdy
du

+ 2x · 1
y
= 0

so
dy

du
=

1

2y

If we are still hoping to use the existence theorem, we could use

w = y2

which means that w ≥ 0. Then,
dw

du
= 2y

dy

du

so
dy

du
=

1

2y

dw

du

and
1

2y

dw

du
=

1

2y

so
dw

du
= 1
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The initial condition

x = 1, y = 3

implies

u = 9, w = 9

Then, there exists a unique solution for v in terms of u over the interval of validity

where they both exist, namely

u = w

We know that

w ≥ 0

which means

u ≥ 0

which translates into the same interval of validity that we found, since u = 11− 2x2.
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6. dx
dt

= x
t

with x(−1) = −2.

This problem is of a different type. It is relatively easy to put this problem into the

desired form
dx

dt
+ p(t)x = q(t)

We have
dx

dt
+

(
−1
t

)
x = 0

Then, the existence-uniqueness theorem tells us that there exists a unique solution

on the largest domain where p(t) and q(t) are continuous that contains the initial

condition. The function q(t) = 0 is continuous everywhere, but p(t) = −1
t

is not con-

tinuous at t = 0. Then, there exists a unique solution on any domain not containing

zero and the initial condition, which is at t = −1. There exists a unique solution on

the range −3 ≤ t ≤ 0, for instance, or on the range −5 ≤ t < 0. The largest possible

domain that contains the point of initial condition

t = −1

is

−∞ < t < 0

The same unique solution that exists and is defined on any of these smaller interval

is also defined on the larger interval, so the existence-uniqueness theorem tells us.

But the existence-uniqueness theorem says that this solution is not unique outside of

this domain, because there is a break in continuity and the solution could be different

for t > 0. We can state that

There exists a unique solution on −∞ < t < 0

as a result of the existence and uniqueness theorem, and then proceed to actually

solve the differential equation to see exactly what these assertions signify.
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This differential equation is separable, so we can solve it: we have

1

x
dx =

1

t
dt

Integrating, then, we have

ln |x| = (ln |t|) + C

so

|x| = e(ln |t|)+C = C|t|

We cannot remove the absolute values here, as we did in previous sections, because

the absolute values are key to the restrictions on the interval of validity. What if, for

instance, x = t for negative t, and x = −t for positive t? This might create a problem

at t = 0 because the function would not be smooth - but we recall that the original

differential equation is not defined for t = 0. Applying the initial condition

x(−1) = −2

we have

|−2| = C |−1|

so

C = 2

and we see that

|x| = 2|t|

We can also process the double absolute value. Actually,

x = 2|t|

is not a solution to the initial value problem because at t = −1 we need x = −2 so

the only solution to the initial value problem is

x = −2|t|
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Now, when t is negative, the solution takes the form

x = −2(−t) = 2t

which is the specific solution. This clearly exists and solves the differential equation

for all −∞ < t < 0, which is an interval of validity around t = −1. What about when

t is positive? The case when t is positive is the key as to why the interval of validity

does not go past zero. Although the specific solution x = 2t might be defined at t = 0,

it is not a solution to the differential equation at t = 0 because the differential equation

is not defined at t = 0. So the solution does not exist at t = 0. At t > 0, the solution

exists, but it is not unique. We could have

x(t) =


2t t < 0

−2t t > 0

or actually x(t) defined for t > 0 as Ct for any C. This is another solution to the

differential equation x(t) that is defined for all t 6= 0. It solves the differential equation

everywhere and it is continuous on its domain. There is no discontinuity at zero

because the solution is not defined at t = 0. Then, there is another solution different

than x(t) = 2t that is continuous and defined on a larger range than the interval of

uniqueness. The uniqueness result in the theorem only states that, in the interval of

the initial condition where p(t) and q(t) are continuous, there will be a unique solution.

We have demonstrated this by finding the unique solution, and showing that outside

the range of validity the solution is not unique. But inside the range of validity, there

is no other solution to the initial value problem.
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7. dy
dx

= y lnx with y(100) = 5.

The logic of this problem is similar to the last problem, except even more clear-cut.

This differential equation easily takes the form

dy

dx
− y lnx = 0

so

p(x) = lnx, q(x) = 0

The function p(x) = lnx is continuous everywhere it is defined, but it is only defined

for

0 < x <∞

Then we only expect a solution that is defined for 0 < x < ∞, but we expect our

solution to be unique since there is an initial condition provided:

There is a unique solution defined for 0 < x <∞

We can confirm the validity of this result by finding that solution and proving its unique-

ness. This equation is separable, so

1

y
dy = lnxdx

Integrating both sides, then,

ln |y| =
∫

lnxdx

We solve
∫
lnxdx by parts. We note

lnx = (lnx) · 1

so we let

U(x) = lnx, V ′(x) = 1
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and then

U ′(x) =
1

x
, V (x) = x

and ∫
lnxdx = x lnx−

∫
x · 1

x
dx = x lnx−

∫
1dx = x lnx− x+ C

so we have

ln |y| = x lnx− x+ C

and

|y| = ex lnx−x+C = Cex lnxe−x = Cxxe−x

We can drop the absolute value on y in this case. On the continuous range x > 0,

it is impossible for Cxxe−x to be both positive and negative. Unlike the last problem,

where there was a break in the range at zero that permitted the constant to have

multiple values on different intervals and be continuous on each separate interval,

here there is only one interval where a solution can be defined. We never have y = 0

since

xx 6= 0, e−x 6= 0

so then y is either positive or negative and we can write

y(x) = Cxxe−x

Then, we can apply

y(100) = 5

to get that

5 = C · 100100e−100

so

C = 5 · 100−100e100

and the specific solution is

y(x) = 5 · 100−100e100xxe−x
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This is defined for x > 0. If x < 0, then xx is not defined, because a negative number’s

root is generally not defined over the reals. If x = 0, then 00 is not defined. But the

solution exists for x > 0. We could also prove that the solution for x > 0 is unique.

Suppose that

Y (x) = a(x)xxe−x

is a solution to this differential equation. Then, we want to see under what conditions

we have
dY

dx
= Y lnx

We have
dY

dx
= a′(x)xxe−x + a(x)

d

dx

(
xxe−x

)
We have

xx = ex lnx

so we have

d

dx
ex lnx−x = ex lnx+x

d

dx
(x lnx− x) = ex lnx+x (lnx+ 1− 1) = (ln x) · ex lnx+x

Then,
dY

dx
= a′(x)xxe−x + a(x) lnxex lnx+x

For this to be equal to

Y lnx = a(x) (lnx) ex lnx+x

we need

a′(x)xxe−x = 0

which is only true when a(x) is a constant, and only the particular value of the constant

that we have found meets the initial condition. So we have corroborated the results

for existence and uniqueness.
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8. dx
dt

+ x
t2−1 = 2

2t−1 with x(0) = 0. What if instead of x(0) = 0 we have x(2) = 0?

This function is already in the form

dx

dt
+ p(t)x = q(t)

We have

p(t) =
1

t2 − 1
, q(t) =

2

2t− 1

Then, p(t) is continuous except at

t = ±1

and q(t) is continuous except at

t =
1

2

We can then break the real line up into intervals over which this differential equation

is defined, where the interval of validity is in red:

Plot for 8

Of the four intervals here defined, the interval that includes the initial condition at t = 0

is

−1 < t <
1

2

The differential equation could and does have a solution on the other intervals where

it is defined. However, the only unique solution is on this red interval. In other words,
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there are many solutions to this initial value problem based on all of the piecewise

different solutions on other intervals, but every solution is unique on this interval of

validity. Then,

For x(0) = 0, there exists a unique solution on − 1 < t <
1

2

We can demonstrate our results by actually finding the solution. This is a nonhomo-

geneous linear differential equation. We solve it by first solving the related homoge-

neous equation:
dx

dt
+

x

t2 − 1
= 0

so
dx

x
= − dt

t2 − 1

and

ln |x| =
∫
− 1

t2 − 1
dt

This integral is solved by partial fractions. We have

t2 − 1 = (t+ 1)(t− 1)

so
1

t2 − 1
=

A

t+ 1
+

B

t− 1

for constants A,B. Cross-multiplying by t2 − 1, we have

1 = A(t− 1) +B(t+ 1)

so

(A+B)t+ (−A+B) = 1

which means

A+B = 0,−A+B = 1
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This means that

B =
1

2
, A = −1

2

and

− 1

t2 − 1
= −

(
−

1
2

t+ 1
+

1
2

t− 1

)
=

1
2

t+ 1
−

1
2

t− 1

and ∫
− 1

t2 − 1
dt =

∫ 1
2

t+ 1
dt−

∫ 1
2

t− 1
dt =

1

2
ln |t+ 1| − 1

2
ln |t− 1|+ C

so we have

ln |x| = 1

2
ln |t+ 1| − 1

2
ln |t− 1|+ C =

1

2
ln

∣∣∣∣ t+ 1

t− 1

∣∣∣∣+ C

and

|x| = Ce
1
2
ln| t+1

t−1 | = Ce
ln

√
t+1
t−1 = C

√∣∣∣∣ t+ 1

t− 1

∣∣∣∣
Around t = 0, the function t+1

t−1 is always negative, so - in this interval - we have

|x| = C

√
t+ 1

1− t

We also have that x can never be zero in this range. We suspect possibly other

answers that involve changing signs where y can be zero - that is, around t = −1 or

on the other side of t = 1, but since the signs don’t change in the interval of validity

and we cannot switch from one branch to another, we have

x(t) = k

√
t+ 1

1− t

around t = 0. This is the solution to the related homogeneous equation. The nonho-

mogeneous equation, then, we suspect has equation

x(t) = k(t)

√
t+ 1

1− t

We want to check when
dx

dt
+

x

t2 − 1
=

2

2t− 1
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We have
dx

dt
= k′(t)

√
t+ 1

1− t
+ k(t)

d

dt

√
t+ 1

1− t

By the chain, power, and quotient rules, we have that

d

dt

√
t+ 1

1− t
=

1

2
√

t+1
1−t

· 1(1− t)− (−1)(t+ 1)

(1− t)2
=

1√
(1− t)3(1 + t)

so

dx

dt
+

x

t2 − 1
= k′(t)

√
t+ 1

1− t
+

k(t)√
(1− t)3(1 + t)

+
k(t)

√
t+1
1−t

t2 − 1

The second two terms cancel out because√
t+1
1−t

t2 − 1
= −

√
t+ 1√

1− t(1− t)(1 + t)
= − 1√

(1− t)3(1 + t)

so we have

k′(t)

√
t+ 1

1− t
=

2

2t− 1

or

k′(t) =
2
√
1− t√

t+ 1(2t− 1)

The solution, k(t), is not a function that is easy to calculate. A solution for k(t) exists,

however, so then we have that the solution is

x(t) = k(t)

√
t+ 1

1− t

This is the use of the existence theorem: we are told for sure that a solution ex-

ists even if we are not eventually able to find it. Factors in the form of the solution

also serve to indicate discontinuities in the solution, corroborating the results of the

existence-uniqueness theorem. We suspect from the form of k′(t) that the solution

will not be defined at t = 1
2

or t = ±1. Then, a unique solution to the initial value

problem x(0) = 0 will exist on the interval between −1 and 1
2
. The solution, however,

even if it is defined outside of this range, could vary because the constants could be

different outside of this range. In other words, when we find k(t) there will be a con-

stant of integration, but this constant could be different on any of the different ranges
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on which the solution is potentially defined. Then, the solution is not unique outside

of the small range between −1 and 1
2
. Because of the discontinuities, we could have

different constants for different sections.

The logic is exactly the same if the initial condition is x(2) = 0. All of the same

arguments apply: there exists a unique solution function, but the interval of validity

for uniqueness is

If x(2) = 0, there exists a unique solution on 1 < t ≤ ∞
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9. dx
dt

+ x tan t = 1 with x(3) = 5. What if instead of x(3) = 5 we have x(5) = 5000?

This problem has a new twist. It is in the correct form,

dx

dt
+ p(t)x = q(t)

with

p(t) = tan t, q(t) = 1

The function q(t) is continuous everywhere, but p(t) is more complicated. Rather

than having a point or section of discontinuity, or several points of discontinuity, this

function p(t) is discontinuous at infinitely many points. Since

tan t =
sin t

cos t

it is discontinuous wherever cos t = 0 - that is, at

π

2
+ πn

for any integer n. Given the initial condition x(3) = 5, then, the existence-uniqueness

theorem indicates that there exists a solution on the interval where p(t) and q(t) are

continuous that includes t = 3:

Plot for 9
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This is the red interval between
π

2
< t <

3π

2

so

With x(3) = 5, there exists a unique solution on
π

2
< t <

3π

2

For x(5) = 5000, t = 5 is more than 3π
2
≈ 4.71 so it is not in the same red interval, but

t is clearly smaller than 5π
2

, so

With x(5) = 5000, there exists a unique solution on
3π

2
< t <

5π

2

Note that the value of x does not matter in these interval of validity problems (even if

it is very large), only the value of t.

The meaning of all these discontinuities is that a solution to the differential equation

could potentially have a different solution in each interval. The initial value only dic-

tates one solution over the interval where the initial value is, but the other solutions

are free to vary. Therefore the interval of uniqueness is only the interval of continuity

where the initial value is. To understand this, we can solve the differential equation. It

is a nonhomogeneous linear equation, so the related homogeneous equation is

dx

dt
= −x tan t

Then,
1

x
dx = − tan tdt

so

ln |x| = −
∫

tan tdt = (ln | cos t|) + C

Then,

|x| = e(ln | cos t|)+C = C| cos t|

On any interval, then,

x = C cos t
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Due to the absolute value, it is possible that on some intervals C is negative, but on

other intervals C is positive. We know that x is never zero because if cos t = 0 then the

differential equation is not defined because tan t is not defined. This is the solution

to the related homogeneous equation. We expect a solution to the nonhomogeneous

equation of the form

x(t) = k(t) cos t

Then,
dx

dt
= k′(t) cos t− k(t) sin t

and
dx

dt
+ x tan t = k′(t) cos t− k(t) sin t+ k(t) sin t = k′(t) cos t

which we set equal to 1, so

k′(t) = sec t

and

k(t) = (ln | tan t+ sec t|) + C

as a table of integrals will indicate. Then,

x(t) = cos t (ln | tan t+ sec t|) + C cos t

This is defined everywhere except at π
2
± πn. If x(3) = 5, there will be a solution for

C that is valid between the two adjacent zeroes of cosine. But outside of these two

zeroes, C could be something different. We could have C1 defined for t between 3π
2

and 5π
2

, then C2 defined for t between 5π
2

and 7π
2

, and so on. This does not create

a continuity issue because the solution cannot be defined at π
2
+ nπ where the two

different solution functions would meet. The solution is only unique in the interval

where the initial condition is given, because there the constant is fixed. If x(5) = 5000,

there is a solution for C in the interval between 3π
2

and 5π
2

. The fact that x = 5000 does

not affect the existence of an answer; it just means that C must be large. But the
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constants in other intervals are not prescribed, so the interval of uniqueness again

has length π.
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10. dy
dx

+ y csc x
2
= x with y(−3) = 4. What if instead of y(−3) = 4 we have y(3) = 4?

The logic in this problem is the same as in the last problem. We have

p(x) = csc
x

2

and

q(x) = x

All of the continuity issues are with p(x), since q(x) is continuous everywhere. There

is a discontinuity in p(x) whenever

sin
x

2
= 0

since cscx = 1
sinx

. This occurs whenever

x

2
= πn

or

x = 2πn

Then, the intervals of validity are between 2π(n− 1) and 2πn. If y(−3) = 4, a solution

exists and is unique between −2π and 0, since this is the range that −3 falls in. If

y(3) = 4, a solution exists and is unique between 0 and 2π, since this is the range that

3 falls in.

With y(−3) = 4, there exists a unique solution on − 2π < t < 0

and

With y(3) = 4, there exists a unique solution on 0 < t < 2π

We can assert this confidently by the existence-uniqueness theorem without having

to actually calculate the solution. This is very fortunate since the solution is very com-

plicated, with many different expressions of cotangent (as a calculator could reveal.)
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